
 ALGIN YAPAR et al.                                                  Universal Journal of Pharmaceutical Research 2020; 5(3):48-52                                                  

   

ISSN: 2456-8058                                                                   48                                                 CODEN (USA): UJPRA3    

  Available online at www.ujpr.org   
       Universal Journal of Pharmaceutical Research 

      An International Peer Reviewed Journal 

   ISSN: 2831-5235 (Print); 2456-8058 (Electronic) 

     Copyright©2020; The Author(s): This is an open-access article distributed under the terms of 

         the CC BY-NC 4.0 which permits unrestricted use, distribution, and reproduction in any                

medium for non-commercial use provided the original author and source are credited 
         
         

 

REVIEW ARTICLE                                                  

 

TISSUE ENGINEERING BIOREACTORS:  POTENTIAL APPLICATIONS AND 

SCALE UP STRATEGY  
Serhat ALADAĞ , Evren ALGIN YAPAR

*
 

Department of Analysis and Control Laboratories, Turkish Medicines and Medical Devices Agency, 06430 Sıhhiye,  
Ankara, Turkey. 

 

Article Info: 
_______________________________________________ 

 
Article History: 

Received: 2 April 2020 

Reviewed: 12 May 2020 

Accepted: 23 June 2020 

Published: 15 July 2020 

_______________________________________________ 
Cite this article:  

ALADAĞ S, ALGIN YAPAR E. Tissue 

engineering bioreactors: an overview on 

potential application and benefits of scale up 

strategy. Universal Journal of Pharmaceutical 

Research 2020; 5(3):48-52. 

https://doi.org/10.22270/ujpr.v5i3.416 

______________________________________________ 
*Address for Correspondence: 

Dr. Evren ALGIN YAPAR, Department of 

Analysis and Control Laboratories, Turkish 

Medicines and Medical Devices Agency, 06100 

Sıhhiye, Ankara, Turkey. Tel: +903125655370, 

E-mail: evrenalgin@yahoo.com 

Abstract 

____________________________________________________________________________________________________ 
 
Tissue engineering bioreactors have been used in order to achieve production of 
artificial tissue, increasing cell proliferation capacity and yield and/or in vitro 
tissue/disease modelling. Although it is still discussing how to obtain functional 
and vascular tissue with these bioreactors, preclinical and clinical studies are 
ongoing. Tissue engineering bioreactors have been used as lab-scale bioreactors 
until now. Crucial potential application areas can be created by increasing the 

production capacity and bioprocess efficiency of these bioreactors. In this review, 
recent bioreactor technologies such as spinner flask, rotating wall/bed, hollow fiber 
membrane, perfusion and mechanical stimuli bioreactors are briefly presented in 
terms of their potential applications in medical field especially in the scope of 
scale-up approaches such as bubble column, stirred tank, membrane, air lift, 
fluidized packed and bed bioreactors. 
Keywords: Bioreactors, modelling in pharmaceutical/biological research, tissue 
engineering, organ support systems, tailor made treatment. 

 

INTRODUCTION 

 

Cell culture has begun to use in medical sciences as 2D 

cell culture accompanying with many disadvantages 

such as not mimicking the in vivo environment, mass 

transfer, gas exchange, waste management, inability to 

real time monitoring of the culture medium, harvesting 

the cells by enzymatic methods and eliminating the cell 

products from the medium during replacement1,2. The 

3D culture systems have been enhanced by using 

bioreactors in order to eliminate the disadvantages of 
the static culture. Bioreactor is a system that supports 

biological environment, which designed to gather 

cells/tissues in cell culture. They are developed to use 

in tissue, bioprocess/biochemical engineering. 

Bioreactors can be used for the tailor made treatment, 

the organ support systems, increasing the number of 

cells before autologous cell implantation, in vitro 

tissue/disease modelling in pharmaceutical research 

and producing recombinant human proteins, vaccines, 

drugs and tissue grafts3,4. There are different types of 

bioreactors; spinner flask, rotating wall/bed, hollow 
fiber membrane, perfusion and mechanical stimuli 

bioreactors5. In this review, recent bioreactor 

technologies for tissue engineering briefly presented in 

terms of their potential applications in medical field 

especially in the scope of scale-up approaches. 

Tissue Engineering Bioreactors 

Five types of bioreactors, which can be used for tissue 

engineering are currently in use and commercially 

available. These are; spinner flask, rotating wall/bed, 

hollow fiber membrane, perfusion and mechanical 

stimuli bioreactors6. Their mechanisms are briefly 

indicated as follows.  

Spinner Flask Bioreactors 
Spinner flasks are simple and frequently utilized 

bioreactor type. In this system; scaffolds are fixed the 

needles, magnetic bar mixes the medium. Along 

seeding, suspended cells into medium are transferred to 

scaffold throughout by convection. In this way, cell 

seeding performance is increased by 3D seeding 

medium7.  

Rotating Wall/Bed Bioreactors 
First discovered rotating wall bioreactor has been 

originally projected by National Aeronautics and Space 

Administration (NASA) in order to gather stable cell 
culture research in space. At the same time, this is 

revealing a potential for culturing cells on Earth. Wall 
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rotation rate allows the centrifugal force, 

hydrodynamic drag force and gravitational force8,9.  

Hollow Fiber Membrane Bioreactors 
The bioreactors are frequently utilized for culturing 

sensitive and highly metabolic cells which are needed 
high mass transfer10. Hollow fiber membrane 

bioreactors have increased surface for cell attachment. 

Cells can be seeded inner/outer surface of fibers. 

Hollow fiber membrane bioreactors are utilized for 

several purposes; cell population expansion and 

creation of engineered tissues in the field of 

regenerative medicine, in vitro models for drug testing 

in pharmaceutical industry11.  

Perfusion Bioreactors 
The perfusion bioreactors have continuous flow and 

oxygenated medium through seeded scaffold which is 

fixed part of bioreactor. These features enhance 

medium flow through scaffold pores also provide 

mechanical stimulus to cells with optimized shear 

stress. In this way, cell function and viability are 

improved12. 

Mechanical Stimuli Bioreactors 
There are several types of mechanical stimuli 

bioreactors which are utilize static, dynamic or 

combined effect. Compression bioreactors utilized for 

development of cartilage tissue that are required 

mechanical stimulus for proliferation. In strain 

bioreactors; force applied to the construct is a tensile 

force. These systems are utilized for tendons and 

ligaments engineering13. 

 

Table 1: Application fields, types and examples of bioreactors in medical fields. 

Applications Fields of 

Bioreactors  

Types of Application 

 

Application Examples 

The tailor made treatment 

Organ support systems  
 
 

Bioartificial kidney system4,18,19  

Bioartificial liver support system20,21,22,23  Bioartificial 
pancreas system24,25 

Increasing the number 
of cells before 

autologous cell 
implantation 

Chondrocyte26  
Hepatocyte27  

Stem cell28  
Platelet rich plasma29 

Modelling in 
pharmaceutical/biological 
researches 

In vitro tissue 
modelling 

Bone tissue30 
Cornealtissue31 

Skeletal muscle32 
Vascular smooth muscle tissue33 

Micro-Bioreactors, Lab-on-Chips, Organ-on-Chips34-40  

Disease modelling 

Modelling fibrosis41 
Modelling colon cancer42 

Modelling acute liver failure43 
Modelling chronic obstructive pulmonary disease44 

Modelling lung tumor45,46 

Modelling malignant peripheral nerve sheath Tumor47 

Disease-on-Chips48-50  

Human medicinal products 
bioprocess 

Vaccines 
Viral vaccine production (H1N1)17 

Monoclonal antibodies51  

Recombinant human 
proteins 

Recombinant human serum albumin52 
Recombinant human insulin53 

Drugs 

Antibiotics (phenoxymethyl penicillin)54 
Citric acid55 

Pyruvic acid56 
α-Cyclodextrin57 

Tissue grafts 
Vascular tissue graft58-62 

Osteochondral graft63,64 
Bone graft65-69 

 

Potential application fields and scale up strategy 

Tissue engineering bioreactors are lab-scale bioreactors 

based on tissue production or modeling. In addition to 

the works carried out to achieve the goal of tissue 

production, other outcomes of these systems were also  
benefited. Scale-up approaches and techniques are 

coming with problems to overcome. These problems 

are also parameters that need to be optimized such as 

operating time, production efficiency and capacity, 

temperature, pH, oxygenation, continuous monitoring,  

mass transfer, gas exchange, obtaining products and 

control of secondary processes. If repeatable and 

reproducible systems are obtained by optimizing scale-

up conditions, potential applications of bioreactors in 

the medical field can be better succeded5-13.  

 

Considering the usage areas of tissue engineering 

bioreactors and gains, it is seen that these bioreactors 

have potential application capacity. Potential 

applications arise due to the needs for them. Recent 

potential applications of bioreactors in the medical 
field can be listed as; i. taylor made treatment, ii. in 

vitro tissue/disease modelling in pharmaceutical 

/biological research, iii. producing recombinant human 

proteins, vaccines, drugs and tissue grafts4,14-17. 

Although not in the near future; there is a potential that 

tissue/organ printing and personal bioreactor 

producing.  

The Tailor Made Treatment 

Conventional treatment methods include generalized 

protocols based on common indications. On the other 
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hand in some clinical scenarios, patients’ individual 

feature and medical charts of patients may vary from 

patient to patient. The tailor made treatment with 

bioreactors can be achieved as application of organ 

support systems and increasing the number of cells 
before autologous cell implantation. Some organs have 

synthesis, filtration, metabolization and detoxification 

function such as kidney, liver and pancreas. In this 

point, the extracorporeal organ supporting systems is 

beneficial, especially on the cell based therapy for 

example; stem cell, platelet rich plasma, autologous 

cell implantation, etc., cell proliferation capacity and 

harvested cell number differ with patient to patient by 

cell origin, age and gender. Because of these individual 

changes, the tailor made treatment has been gained 

importance14,15. 

Modelling in Pharmaceutical Research 
Animal studies and their outcomes are naturally piece 

of development of therapeutic systems. However; there 

are some ethical concern come from 3R approach. In 

this point in vitro tissue, disease and physiological 

system modelling are preferable because of saving 

animals and also avoid consuming time, budget and 

working power. Scientists have been still working on 

tissue modelling such as cardiac, liver, pancreas, breast 

and bone tissue modelling in order to work targetted 

organ. On the other way, there are some studies as to 

disease modelling such as bone fracture, damaged 
tissue, cancer tissue in order to work disease based 

therapeutical agents16. Multicellular spheroid, hollow 

fiber and multicellular layer are utilized for modelling 

pharmaceutical research such as understanding 

cytotoxicity, drug metabolism and pharmacokinetics4. 

Producing Human Medicinal Products 

The batch processing is conventionally utilized in order 

to gather human medicinal products such as vaccine, 

drug and recombinant proteins. In this point, there are 

some concerns about Good Manufacturing Practices 

(GMP) requirements, yield performance, process 

management requirements, monitoring, which also 
must be evaluated in a standardized manner to ensure 

quality control. Some critical parameters such as 

proteomics,surface marker analysis,sterility testing and 

functional assays can be used toensure the quality 

control15,70,71. In spite of the mentioned concerns, the 

bioreactors seem to be a good a solution with acoustic 

settlers, hollow fiber bioreactors and hollow fiber 

based perfusion systems including tangential flow 

filtration or alternating tangential flow technologies17. 

 

CONCLUSIONS 
 

The results obtained with tissue engineering 

bioreactors are promising. These systems increase cell 

number and efficiency, cell transplantation 

performance through tissue scaffolds, largely eliminate 

the disadvantages of the 2D cell culture medium, 

ensure real-time monitoring of the cell culture medium 

and achieve graft production. However; there are some 

problems such as lack of repeatability/reproducibility 

in production performance, standardizing treatment 

protocols for transplantation and achieve the same 
efficiency due to patients' different age, gender and 

health status. It is also seen from the studies in the 

literature that functional and vascular structures cannot 

be obtained. On the other hand, GMP requirements and 

legislative infrastructure should be developed in 

advanced therapy medicinal products. Additionally; 
scale-up approaches and techniques are coming with 

problems to overcome. These problems are also 

parameters that need to be optimized such as operating 

time, production efficiency and capacity, temperature, 

pH, oxygenation, continuous monitoring, mass transfer, 

gas exchange, obtaining products and control of 

secondary processes. If repeatable and reproducible 

systems are obtained by optimizing scale-up 

conditions, potential applications of bioreactors in the 

medical field can be better succeeded. From the 

perspective of the future, it is anticipated by the related 

studies that while the developments in bioreactor 
systems continue, there will be significant 

developments regarding the use of plants as bioreactors 

in drug development. 
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