ANTI-HYPERGLYCEMIC AND ANTI-OXIDANT ACTIVITIES OF METHANOL EXTRACT OF GONGRONEMA LATIFOLIUM

Edenta Chidi1, Nwobodo Ndubuisi Nwobodo2, Nweje-Anyalowu Paul C3
1Department of biochemistry, Renaissance University, Enugu, Nigeria.
2Department of Pharmacology and Therapeutics, Division of Clinical Pharmacology and Translational Medicine, University of Science and Technology, Enugu State, Nigeria.
3Clifford University, Owerrinta, Abia State, Nigeria

ABSTRACT

Objective: Gongronema latifolium (Asclepiadaceae) is used as bitter spice or flavouring agent in many traditional Nigerian dishes. It is well known for medicinal and nutritional purposes like anti-hyperglycemic, anti-oxidant, antitussive and widely distributed in the southeastern states of Nigeria. Objective of present study was to evaluate the anti-hyperglycemic and anti-oxidant effect of the methanol extract of Gongronema latifolium leaves.

Methods: The methanol extract of G. latifolium at doses of 250 and 500 mg/kg were studied for anti-hyperglycemic effect in alloxan-induced hyperglycemic rats. The variation in blood glucose level in normal and experimental rats on 0, 7, 14 and 21 days of treatment has also been recorded. The effect of different treatment on body weight of rats was also determined. The antioxidant properties of the extracts as determined by the DPPH free radical scavenging assay.

Results: Treatment with G. latifolium extract showed signs of recovery as comparable with the standard drug glibenclamide (0.25 mg/kg). The result showed that G. latifolium extract caused a concentration dependent percentage increase of antioxidan t activity.

Conclusion: Study concludes that methanol leaf extract of G. latifolium possesses significant anti-hyperglycemic and anti-oxidant activities.

Keywords: Anti-hyperglycemic, anti-oxidant, carrageenan-induced paw edema, Gongronema latifolium.
cardiovascular diseases and lung cancer. Antioxidants from natural sources have a higher bioavailability and therefore higher protective efficacy compared to synthetic antioxidants.

Gongronema latifolium (Asclepiadiaceae) is used for medicinal and nutritional purposes widely distributed in the southeastern states of Nigeria. Apart from being used as bitter spice or flavouring agent in many traditional Nigerian dishes the plant leaves has been found very efficacious as an anti diarrhoeal and antitussive. Aerial parts are taken to treat cough, intestinal worms, dysentery, dyspepsia and malaria. It is also taken as a tonic to treat loss of appetite. A decoction of leaves or leafy stems is commonly taken to treat diabetes and high blood pressure. The objective of the present study was to evaluate the anti-hyperglycemic and anti-inflammatory properties of methanol leaf extract of Gongronema latifolium.

MATERIALS AND METHODS

Collection and preparation of leaf samples

Fresh leaves and roots of G. latifolium were collected from Niger Delta and authenticated.

Extraction of plant materials

Fresh leaves of G. latifolium were washed and allowed to dry at room temperature (28 to 30°C) for two weeks, to avoid the escape of volatile components by oven-drying. The dried leaves were milled into fine powder using the Christy-Norris hammer mill and passed through a 1 mm sieve to obtain a fine powder. 2 kg of the sample was percolated in methanol for 48 hrs; this was then filtered through a Whatman filter paper No.1. The filtrate was evaporated to dryness on a hot plate at an initial temperature of 100°C and the dry powder obtained was suspended in 10 ml distilled water, stirred and refiltered.

Assessment of hypoglycaemic activity

The approval of the Institutional Animal Ethics Committee was obtained before starting the study. An international protocol for conducting experiments on animals were followed. Healthy wistar rats of either sex having weight 150-200 g were selected for this activity. They were housed in standard condition of temperature (25±2°C) with 12 h light per day cycle. Before induction of diabetes weigh and normal glucose levels of rats were determined and recorded as Day 0.

RESULTS AND DISCUSSION

The anti-hyperglycemic effect of methanol extract of G. latifolium leaves was evaluated for 21 days. Alloxan-induced hyperglycemia is due to selective toxicity of alloxan on the pancreatic beta cells, generation of superoxide radicals and cytotoxic action mediated by generation of reactive oxygen species. The cytotoxic action of alloxan is mediated by reactive oxygen species, with a simultaneous massive increase in cytosolic calcium concentration, leading to a rapid destruction of beta cells. The effect of administration of extracts of G. latifolium on blood glucose level of alloxan-induced diabetic rats was evaluated using the intraperitoneal injection of alloxan monohydrate (160 mg/kg). All animals were returned to their cages and given free access to food and water. Blood glucose levels were monitored by using a Glucometer after 72 h of injection and recorded as 1st day. Rats with fasting blood glucose >7.8 mmol/l or 140 mg/dl were considered hyperglycemic and were selected for the study. Diabetic rats were randomly assigned to 5 groups, each group contains six animals. The animals were grouped as follows:

- Group I: Normal control
- Group II: Diabetic control
- Group III: Diabetic rats treated with G. latifolium extract (250 mg/kg)
- Group IV: Diabetic rats treated with G. latifolium extract (500 mg/kg)
- Group V: Diabetic rats treated with glibenclamide (0.25 mg/kg).

Blood samples were obtained from the cut tail tip of the conscious rat and glucose test strip soaked with blood and then inserted to be read by the glucometer. Blood glucose levels were examined after 2, 12, 24, 72 hrs of orally administration of test drugs.

Anti oxidant study

DPPH antioxidant assay

The free radical scavenging activity of G. latifolium extract was analyzed by, 1, 1-diphenyl-2-hydradyl (DPPH) photometric assay. 2 ml of test extract at concentrations ranging from 10 to 400 µg/ml was each mixed with 1 ml of 0.5 mM DPPH in methanol. Absorbance at 520 nm was taken after 30 min incubation in the dark at room temperature using a spectrophotometer. The experiment was done in triplicates and the percentage antioxidant activity was calculated as follows:

\[
\text{% of DPPH free radical scavenging} = \frac{\text{AbsC} - \text{AbsB}}{\text{AbsC}} \times 100
\]

Where; AbsC=Absorbance of control, AbsB=Absorbance of blank.

One ml methanol and 2ml extract were used as blank, while 1 ml 0.5 mM DPPH solution and 2 ml methanol was used as control. Ascorbic acid was used as reference standard.

Table 1: The effect of different treatment on fasting blood glucose levels in alloxan induced diabetic rats

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Blood glucose level (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0<sup>th</sup> Day</td>
</tr>
<tr>
<td>Normal control</td>
<td>90.4±0.25</td>
</tr>
<tr>
<td>Diabetic control</td>
<td>247.58±0.43</td>
</tr>
<tr>
<td>G. latifolium (250 mg/kg)</td>
<td>245.72±0.51</td>
</tr>
<tr>
<td>G. latifolium (500 mg/kg)</td>
<td>247.38±0.09</td>
</tr>
<tr>
<td>Glibenclamide (0.25 mg/kg)</td>
<td>248.46±0.13</td>
</tr>
</tbody>
</table>

N=6, p < 0.05
diabetic rats is shown in Table 1. Treatment of extract of G. latifolium showed a significant reduction in the blood glucose level. It also shows that 0.25 mg/kg glibenclamide is lowering glucose level significantly compared to normal control. Leaf extract at a dose of 500 mg/kg was more effective in reducing the blood glucose level than a dose of 250 mg/kg. The variation in blood glucose level in normal and experimental rats on 0, 7, 14 and 21 days of treatment has also been recorded. Treatment with G. latifolium extract showed signs of recovery as comparable with the standard drug glibenclamide. There was significant loss in body weight of diabetic rats compared to normal rats. In diabetics, glucose is not available therefore the cells use alternatively proteins for energy; consequently due to excessive breakdown of tissue protein a loss in body weight occurs. Body weight slightly increased in the normal control rats compared to initial body weight, whereas in diabetic control rats there was a significant decrease in body weight. Groups that were treated with glibenclamide and G. latifolium extract (250 and 500 mg/kg) showed significant reduction in body weights. The final body weights of treated groups were significantly lower than the final weights of normal control group. Hence, present study showed a good antidiabetic response of leaf extract against the diabetic control rats. There was significant loss in body weight of alloxan induced diabetic rats compared to normal control rats. There was significant difference as compared to initial body weight, whereas in diabetic control rats there was a significant decrease in body weight. Groups that were treated with glibenclamide and G. latifolium extract (250 and 500 mg/kg) showed significant reduction in body weights. The final body weights of treated groups were significantly lower than the final weights of normal control group. Hence, present study showed a good antidiabetic response of leaf extract against the experimental animals. The antioxidant activity was done in vitro using 1, 1-diphenyl-2-hydrazyl (DPPH) spectrophotometric assays. Figure 1 shows the antioxidant activity of G. latifolium and ascorbic acid standard. The result showed that G. latifolium extract caused a concentration dependent percentage increase of antioxidant activity. DPPH is a stable free radical, it accepts an electron or hydrogen radical to become a stable diamagnetic molecule which is widely used to investigate radical scavenging activity. The degree of discoloration indicates the radical-scavenging potential of the antioxidant. Result shows that DPPH scavenging was increased in a concentration dependent manner compared to ascorbic acid.

Table 2: The effect of different treatment on body weight of alloxan induced diabetic rats

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Change in body weight (gm)</th>
<th>10th Day</th>
<th>21st Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control</td>
<td>154±0.31</td>
<td>174.00±0.8</td>
<td>180.50±0.32</td>
</tr>
<tr>
<td>Diabetic control</td>
<td>181±0.28</td>
<td>165.00±0.64</td>
<td>140.67±0.43</td>
</tr>
<tr>
<td>G. latifolium (250 mg/kg)</td>
<td>158±0.17</td>
<td>147.67±2.10</td>
<td>148.33±0.7</td>
</tr>
<tr>
<td>G. latifolium (500 mg/kg)</td>
<td>174±0.36</td>
<td>149.00±0.7</td>
<td>144.37±1.2</td>
</tr>
<tr>
<td>Glibenclamide (0.25 mg/kg)</td>
<td>176±0.28</td>
<td>157.00±0.53</td>
<td>167.83±0.9</td>
</tr>
</tbody>
</table>

N=6, p < 0.05

Table 3: Antioxidant activity of the methanol extract of G. latifolium

<table>
<thead>
<tr>
<th>Sample</th>
<th>Conc (µg/ml)</th>
<th>Absorbance</th>
<th>Absorbance of control</th>
<th>Mean % DPPH scavenging activity</th>
<th>N=3, p<0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascorbic acid</td>
<td>10</td>
<td>0.069</td>
<td>86.4±3±0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>0.060</td>
<td>90.63±3±0.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.049</td>
<td>89.49±3±0.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.038</td>
<td>93.69±3±0.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methanol extract of</td>
<td>10</td>
<td>0.269</td>
<td>70.33±3±0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. latifolium</td>
<td>100</td>
<td>0.250</td>
<td>76.09±3±0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>0.215</td>
<td>78.18±3±0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>0.190</td>
<td>80.27±3±0.78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistical Analysis
GraphPad Prism Version 5.0 for Windows was used for all statistical analyses. Data are presented as mean±SEM and analyzed by one-way ANOVA followed by Dunnett’s multiple comparison test.

CONCLUSION
At present scenario, many researchers are showing their interest in medicinal plants for routine scientific investigation of numerous plants extract for biological effects and potential therapeutic properties in human. Methanol leaf extract of G. latifolium have anti-hyperglycemic and anti-oxidant activities. The methanol extract have antihyperglycemic activity in diabetic rats, most likely to be associated with glucose uptake increasing mechanism. Lower doses of the extract should be tried in future study to establish the most appropriate dose for clinical trial. G. latifolium leaves has shown to be a potential anti-diabetic and thus it can be a promising source for anti-diabetic agent. In the present study, the observed DPPH scavenging activity of the methanolic extract of G. latifolium might be useful for the development of newer and more potent natural antioxidants. So, present
study concluded that detailed investigation of plants used in local health traditions and pharmacological evaluation of these plants and their taxonomical relatives can lead to the development of invaluable plant drug for many dreaded diseases including diabetes mellitus.

AUTHOR’S CONTRIBUTION
The manuscript was carried out, written, and approved in collaboration with all authors.

CONFLICT OF INTEREST
No conflict of interest is related to this paper.

REFERENCES

1. Bernhoft A. A brief review on bioactive compounds in plants, In: Bioactive compounds in plants – benefits and risks for man and animals, Oslo: The Norwegian Academy of Science and Letters 2010; 11-17.