INTRODUCTION
Phytochemicals consists of a various group of natural bioactive molecules very distributed in plants. These bioactive molecules have gained attention in recent times due to their diverse effects on human physiology and human health and their economic importance. Secondary metabolites are basically classified into three classes namely alkaloids, phenolics and terpenoids. The molecules in these classes are further grouped due to their numerous modifications, thus emphasizing the diversity of secondary metabolites. Considering this, reasonable attention has been focused on the identification of plants rich in bioactive phytochemicals and characterization of their medicinal and economic values.

Nutrient limitation, shunt metabolism produced during idiophase, defense mechanism regulator molecules etc, as a result of secondary metabolism include products an excess metabolism. Medicinal flora can be used as treatment of diseases and therapeutic agents pro management of health because they have power over health enhance effects and have bioactive chemical ingredients. An earlier investigation has reported that Capparis species extracts, such as C. spinosa and C. cartilaginea from Saudi Arabia has a significant anti-inflammatory activity. Newly, the mechanism of anti-inflammatory effect of C. spinosa was suggested by El Azhary et al., and involved inhibition of cellular infiltration and cytokine gene expression. Rutin, a flavonoid, obtained from C. acutifolia Sweet exhibited a potent anti-inflammatory effect. Other studies have reported the antioxidant, cytotoxic, larvicidal, antimicrobial, hypotensive and bradycardiac activities of C. cartilaginea. Capparis cartilaginea have various traditional uses in the Arab region. It is used for easing bruises, childbirth, earache, headache, paralysis, swelling, skin and joint inflammation, knee problems; tendinitis and snakebites. In Yemen, it is called lattssa, ḍàṣṣaf or niṣaf and used to treat itching, shortness of breath, head cold, tumors, wounds, boil and for painful knees. Phytochemical studies of C. cartilaginea have resulted in isolating flavonoids and isothiocyanates. Other phytochemicals, such as carbohydrates, saponins, polyphenols, flavonoids, tannins, triterpenes, sterols, amino acid and protein have also been found in the leaves of C. cartilaginea from Yemen. Capers has medicinal distinctive such as rheumatism. Roots used as diuretic, astringent, and...
tonic14. Bark root used as appetizer, astringent, tonic, anti diarrheic and treat hemorrhoids and spleen disease. Bark was also used for gout and rheumatism, as expectorant, and for chest diseases15. Infusion of stems and root bark were used as anti diarrheic and febrifuge. Fresh fruits were used in sciatica, and dropsy.

MATERIALS AND METHODS

All chemicals used in the study were of analytical grade and arranged locally. TLC and preparative TLC were performed using pre-coated aluminium and glass plates with silica gel 60 F254, whereas column chromatography was carried out on silica gels 70-230 mesh. Spots and bands for compounds on TLC were detected using UV light. Proton NMR (500 MHz) and carbon-13 NMR (150 MHz) spectra were recorded on JEOL JNM-ECP400 and chemical shifts in ppm were referenced to internal acetone-d6 and CDCl3, respectively.

Plant material

Plant collection was done on 26 November 2017 from Al-Mahweety North City in Yemen. Identification and classification of the plant material was performed at the Faculty of Medical Science of the University of Al-Razi. Specimens were pressed and a voucher specimen (CCJ017) was deposited in a collection housed at the Department of Pharmacy and Pharmacology.

Figure 1: Kaempferol

Kaempferol (1): yellowish powder. 1H NMR (CD3COCD3, 500 MHz): δ 8.10 (1H, d, H-2and6), 7.80 (1H, d, H-3and5), 7.60 (1H, s, H-8), 6.21 (1H, s, H-3). 13C NMR (CD3COCD3, 150 MHz): δ 179.8 (C-4), 166.0 (C-7), 163.1 (C-5), 158.5 (C-2), 156.9 (C-9), 136.0 (C-3), 133.5 (C-2), 131.9 (6), 123.1 (C-I), 115.9 (C-3and5), 106.3 (C-10), 101.0 (C-6), 92.9 (C-8).

Dihydroxy-lup-20(29)-en-28-oic acid (2): white amorphous powder. 1H NMR (CD3COCD3, 500 MHz), δ 4.62, 4.74 (2H, d, H-29), 4.86 (1H, m, H-3), 3.11, 3.45 (2H, s, H-23), 0.79, 0.96, 0.98, 1.03, 1.66 (each 3H, s, Mex5). 13C NMR (CD3COCD3, 150 MHz): δ 179.7 (C-28), 151.0 (C-20), 112.1 (C-29), 76.0 (C-3), 69.1 (C-23), 53.6 (C-5), 52.0 (C-9), 50.3 (C-18), 48.1 (C-19), 44.1 (C-17), 43.2 (C-14), 41.0 (C-8), 40.0 (C-22), 39.1 (C-13), 38.5 (C-4), 38.0 (C-1), 37.1 (C-10), 37.0 (C-16), 34.6 (C-7), 31.1 (C-21), 28.3 (C-23), 27.4 (C-15), 27.0 (C-12), 25.3 (C-2), 22.1 (C-...
11), 20.6 (C-30), 19.5 (C-28), 18.1 (C-29), 16.3 (C-25), 16.1 (C-26), 15.5 (C-24), 15.0 (C-27).

Sitosterol (3): white amorphous powder. 1H NMR (CD$_3$COCD$_3$, 500 MHz): δ 0.68, 0.80, 0.84, 0.91, 1.06 and 1.11 (H- 18,19,21,26,28,29), 5.41 (1H, t, H-6), 3.93 (1H, m, H-3). 13C NMR (CD$_3$COCD$_3$, 150 MHz): δ 141.5 (C-5), 121.1 (C-6), 77.8 (C-3), 57.1 (C-14), 56.2 (C-17), 52.1 (C-24), 50.3 (C-9), 46.1 (C-25), 42.4 (C-13), 41.0 (C-20), 40.2 (C-12), 37.6(C-4), 37.4 (C-1), 36.6 (C-10), 34.0 (C-22), 32.2 (C-8), 32.0 (C-7), 30.4 (C-23), 29.1 (C-16), 28.4 (C-2), 26.1 (C-28), 25.0 (C-15), 21.4 (C-21), 21.3 (C-11), 20.1 (C-27), 19.5 (C-26), 19.0 (C-19), 13.2 (C-29), 12.0 (C-18).

RESULTS AND DISCUSSION

The present studies explain the phytochemical investigation of the aerial parts of *Capparis cartilaginea* leaves which resulted in the isolation and structure elucidation of three compounds, hitherto unreported from this part of the plant. The structures of these compounds were elucidated through superior spectroscopic techniques.

Compound (1); yellowish powder isolated. IR scale found hydroxyl group at (3395 cm$^{-1}$) and carbonyl group at (1707 cm$^{-1}$). The molecular formula is (C$_{16}$H$_{20}$O$_{5}$). The chemical shifts and coupling constants of 1H-NMR data indicated a dihydroxylated pattern for ring A (two m-coupled doublet at δ H 6.21 (1H, s, H-8) and 5.81 (1H, s, H-6) and 4′·2′and6′), 7.80 (2H, d, H-3′and5′). Fifteen carbon signal come out in 13C NMR data as well as six methins and nine quaternary carbons at δ158.5 and136.0, alkenes carbons group appeared.

Compound (2); purification as white amorphous powder. (C$_{30}$H$_{50}$O$_{4}$) is the molecular formula for the compound. Proton 1H-NMR data exhibit the presence of five tertiary methyl groups at δ H 0.79, 0.96, 0.98, 1.03 and 1.66 for H-(24, 25, 26, 27, 30) positions respectively. The 13C-NMR spectrum of compound display carbonyl of acidic acid, five tertiary methyl groups, terminal double bond and twenty three signals to other carbon established in 13C-NMR data.

Compound (3); was purified as white amorphous powder. 1H NMR data appeared at δ (0.68, 0.80, 0.84, 0.91, 1.06 and 1.11), for six methyl groups. Multiple (H-3). Proton appeared at δ (3.93). Olefinic protons present at δ 5.41. Spectrum of 13C NMR showed twenty nine different carbon groups as signal for six methyl's, nine methylene's, eleven methins and three quaternary carbons. Also appeared at δ141.5 and 121.1, for alkenes carbons.

Figure 5: 13C spectra for sitoserol

Figure 6: 1NMR spectra of Kaempferol
CONCLUSION

Kaempferol, dihydroxy-lup-20(29)-en-28-oic acid and Sitosterol isolation and purification from the leaves of *Capparis cartilaginea*. The identification and reporting was done for the first time from this part of the plant. The isolation, purification and analysis carried out by means of various physical (solvent extraction, column chromatography, radial chromatography, preparative TLC and melting points) and spectral techniques.

AUTHOR’S CONTRIBUTION

The manuscript was carried out, written, and approved in collaboration with all authors.

CONFLICT OF INTEREST

No conflict of interest associated with this work.

REFERENCES