RESEARCH ARTICLE

ANTIDIARRHEAL ACTIVITY OF ETHANOL AND CHLOROFORM SEED EXTRACT OF COLA NITIDA IN EXPERIMENTALLY INDUCED DIARRHEA

Department of Pharmaceutical Sciences, School of Pharmacy, Central University Ghana, P.O. Box 2305, Tema, Ghana.

ABSTRACT

Objective: Cola nitida has been used in traditional medicine to treat diverse ailments including diarrhea. This study is carried out to investigate the antidiarrheal activity of the ethanol and chloroform seed extract of Cola nitida in Wistar albino rats.

Methods: The ethanol and chloroform extracts of Cola nitida were evaluated with different doses (100mg/kg, 300mg/kg and 650mg/kg of animal weight) orally for antidiarrheal activity using castor oil induced-diarrhea, gastrointestinal motility test and castor oil-induced gastroenteropooling in Wistar albino rats. The observed activity was compared to standard antidiarrheal drug Loperamide hydrochloride (2mg/kg) and to distilled water (10ml/kg) which served as the negative control.

Results: Cola nitida ethanol extract at 150, 300 and 650mg/kg showed 55.64%, 59.73%, and 71.34% inhibition in gastrointestinal motility respectively. A significant reduction in diarrheal episode (p<0.0001) was also observed with 650mg/kg of both extracts showing 100% inhibition. A reduction in the volume of fluid in the small intestine was also seen, this was however not significant. The chloroform extract of Cola nitida on the other hand produced a significant reduction in volume and weight of small intestinal content (p<0.05) with 650mg/kg showing a 92.73% inhibition of intestinal fluid accumulation.

Conclusion: The ethanol and chloroform extract of Cola nitida showed anti-diarrheal activity in animal model by decreasing the frequency of defeation and by reducing gastrointestinal motility and intraluminal fluid accumulation in the intestine.

Keywords: Anti-diarrheal, Cola nitida, gastro-intestinal motility, seeds.

INTRODUCTION

Diarrheal disease is the second main cause of mortality in children below five years old, and is accountable for the mortality of approximately 525,000 children each year. As a result of this, the World Health Organization set in motion a control program in 1988 to investigate traditional medical practices and other associated areas. Diarrhea can continue for many days, and can cause the body to lose water and salts needed to survive. Formerly, the principal causes of deaths from diarrhea were severe dehydration and fluid loss. Certain factors including bacterial infections are now likely to account for an increasing number of all diarrhea-related deaths. Diarrhea occurring in undernourished children and people living with HIV could be potentially fatal. In Ghana, it is the third main cause of mortality in children under the age of five. Diarrhea has undesirable effects on the growth and development of cognitive ability in children. An approximated 94% of the burden of diarrheal disease is attributed to the environment, and is associated with risk factors such as contaminated drinking water, low socio economic condition, lack of adequate sanitation and poor hygiene. Cola nitida (Vent.) Schott and Endl. fruits have been employed traditionally as an aphrodisiac, appetite suppressant, to alleviate morning sickness, migraine, and indigestion. It has also been used to relieve inflamed or wounded skin. The bitter twigs of Cola nitida have also been used for teeth and gum cleaning. Cola nitida is indigenous to West Africa and the nuts are obtained from cola trees. Cola has a broad number of species that have been widely cultivated some of which are Cola anomala, Cola verticillata (Thonn.) Stapf, Cola acuminata (Pal. de Beauv.) Schott and Endl. and Cola nitida (Vent.) Schott and Endl. are the
most prevalent of the edible species.10 The fruits are commonly used by students, drivers, and other menial workers to prevent hunger and thirst and as stimulant to keep awake and combat exhaustion.11 Cola trees are best known for their seeds or nuts which are rich in caffeine and other secondary metabolites such as tannins, phenols and xanthine.12 It was also reported that the plant had antidepressant and antidiarrheal activity.11 It is known that castor oil induces diarrhea through its active metabolite, ricinoleic acid which causes small intestine peristalsis which in turn leads to changes in the permeability of electrolytes in the intestinal mucosa.13 Ibeh et al., evaluated the antispasmytic and anti-diarrheal activity of the methanol extract of \textit{Cola nitida}14 and since cola nut is believed to possess antidiarrheal activity by traditionalists, this research is carried out to investigate the effect of the ethanol and chloroform crude extract of \textit{Cola nitida} on diarrhea. When confirmed pharmacologically, \textit{Cola nitida} stands the chance of further studies to isolate the active constituent responsible for activity.

MATERIALS AND METHODS

Plant Material

\textit{Cola nitida} seeds were obtained from Akwatia, a town in the Eastern Region of Ghana. The samples were identified and authenticated by Madam Anna Naa Quarley Quartey of Department of Pharmacognosy and Medicinal Chemistry School of Pharmacy, Central University, Ghana. A specimen of the sample was submitted to the University’s herbarium with number CN003.

Plant Preparation and Extraction

The \textit{Cola nitida} seeds were crushed into granules using mortar and pestle. A quantity of the comminuted granules equivalent to 2580.16g was extracted with ethanol (70%) and 1500g extracted with 1500ml of chloroform by cold maceration.15 The mixture was shaken vigorously to enhance the extraction process and filtered after seven days to obtain the filtrate. The filtrate was evaporated using rotary evaporator (Dreawell RE100 pro) to obtain the dry crude extract which was then stored in a refrigerator at 4°C until ready for animal experimentation.

Phytochemical Screening

The ethanol and chloroform crude extracts of \textit{Cola nitida} were investigated for the presence of the following phytochemical constituents: phlobatannins, tannins, flavonoids, saponins, reducing sugars, alkaloids, cardiac glycosides using standard methods.13

Experimental Animal

Wistar albino rats (95-120g) of both sexes obtained from The University of Ghana Animal House were employed for this experiment. The rats were kept in standard plastic cages in a room with controlled 12hrs light and dark cycle. They had unrestricted access to clean water and were fed with standard pelleted commercial feed. The animals were allowed to acclimatize for 14 days before the experiments. The study was carried out according to the National Research Council Guide for the Care and Use of Laboratory Animals16 and Organization for Economic Cooperation and Development (OECD) guidelines.17

The experiments were carried out in the Pharmacology Laboratory of Central University Ghana.

Acute Toxicity Study

The acute toxicity of \textit{Cola nitida} was determined through the oral route. The rats were fasted for 24 hours and doses up to 2000mg/kg17 of the ethanol and chloroform extract of \textit{Cola nitida} were administered to rats of weight between the range of ninety to one hundred gram (90-100g) orally and rats were observed closely for the first six hours and subsequently periodically for seven days for mortality and any delayed toxic manifestations.

Gastro-Intestinal Motility Test

Gastrointestinal (GI) motility test was carried out according to standard methods18 with slight modifications. Transit time of gastrointestinal content was measured at three doses of the ethanol and chloroform \textit{Cola nitida} extract (150mg/kg, 300mg/kg and 650mg/kg) with distilled water (10ml/kg) as negative control and Loperamide hydrochloride (2mg/kg) as positive control. All administrations were done orally with an oral gavage. All animals were administered 1ml of activated charcoal which served as a marker one hour after pretreatment. Animals were then sacrificed by cervical dislocation. The small intestines (from pylorus to caecum) were harvested and distance travelled by activated charcoal was measured and percentage inhibition of gastrointestinal motility was calculated.

Table 1: Results of phytochemical screening of ethanol and chloroform seed extract of \textit{Cola nitida}

<table>
<thead>
<tr>
<th>Phytochemical Constituent</th>
<th>\textit{Cola nitida} (Ethanol extract)</th>
<th>\textit{Cola nitida} (Chloroform extract)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tannins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phlobatannins</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Reducing</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sugars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaloids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cardiac glycosides</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phenols</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Anthraquinones</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Castor Oil-Induced Diarrhea Test

This test was performed according to standard methods19,20. Rats were fasted for 18 hours and were divided into five groups. The nature of fecal matter (put into three categories solid, semi-solid, liquid), and frequency of defecations were measured over a period of 6 hrs. Rats in the first group were administered distilled water (10ml/kg), group two received standard drug Loperamide hydrochloride (2mg/kg) while groups three, four and five received 100mg/kg, 300mg/kg and 650mg/kg of ethanol and chloroform extracts of \textit{Cola nitida} seeds respectively.

Castor oil (1 ml) was used to induce diarrhea in all experimental groups one hour after administration. Rats were placed in individual cages lined with absorbent paper. Percentage inhibition of diarrhea was calculated.
Castor Oil-Induced Gastroenteropooling Test

The activity of *Cola nitida* on the inhibition of the accumulation of intraluminal fluid was ascertained by measuring the volume and weight of fluid accumulated in the small intestine over a period of time. Rats were placed into five groups of five and pretreated as described above. One hour after pretreatment, rats were administered 1ml of castor oil and were sacrificed after another hour by cervical dislocation. The small intestine from the pylorus to caecum was harvested and the contents of each small intestine was emptied in a graduated measuring cylinder and weighed. The volume and weight was recorded and percentage inhibition of secretion was calculated.

Table 2: Effect of ethanol and chloroform extracts of *Cola nitida* on inhibition of gastrointestinal motility

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Dose (mg/kg)</th>
<th>Average length of small intestine/cm</th>
<th>Distance travelled by charcoal meal/cm</th>
<th>% inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water</td>
<td>10</td>
<td>74.58</td>
<td>62.10±4.46</td>
<td>16.73</td>
</tr>
<tr>
<td>Loperamide HCl</td>
<td>2</td>
<td>86.06</td>
<td>18.36±4.60****</td>
<td>78.67</td>
</tr>
<tr>
<td>Cola nitida (Ethanol Extract)</td>
<td>300</td>
<td>75.00</td>
<td>30.20±3.22***</td>
<td>59.73</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>77.80</td>
<td>22.30±5.54****</td>
<td>71.34</td>
</tr>
<tr>
<td>Cola nitida (Chloroform Extract)</td>
<td>150</td>
<td>70.20</td>
<td>66.6±0.58*</td>
<td>5.13</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>77.40</td>
<td>68.1±4.42*</td>
<td>12.02</td>
</tr>
</tbody>
</table>

Table 3: Effect of ethanol and chloroform extract of *Cola nitida* on castor oil-induced diarrhea in rats

<table>
<thead>
<tr>
<th>Treatment groups</th>
<th>Dose (mg/kg)</th>
<th>Average no. of watery stools±SEM</th>
<th>% inhibition of diarrhea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water</td>
<td>10</td>
<td>12.00±0.4472</td>
<td>0.00</td>
</tr>
<tr>
<td>Loperamide HCl</td>
<td>2</td>
<td>1.000±0.3162****</td>
<td>91.67</td>
</tr>
<tr>
<td>Cola nitida (Ethanol Extract)</td>
<td>300</td>
<td>5.200±1.393****</td>
<td>56.67</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>2.000±1.140****</td>
<td>83.33</td>
</tr>
<tr>
<td>Cola nitida (Chloroform Extract)</td>
<td>150</td>
<td>0.000±0.000****</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>2.4±1.122****</td>
<td>80.00</td>
</tr>
</tbody>
</table>

Statistical Analysis

Statistical analysis was carried out using Graph Pad Prism 8.0. All data were summarized as mean±SEM (n=5). Multiple comparison tests were ascertained by one-way ANOVA along with post-hoc Tukey’s honest significant difference (HSD) test. P< 0.05 was taken as statistically significant.

RESULTS

Phytochemical Screening

Results of different chemical tests on the ethanol and chloroform extracts of the seeds of *Cola nitida* showed the presence of flavonoids, tannins and other constituents.

Acute Toxicity Test

Administration of doses up to 2000mg/kg of the ethanol extract of *Cola nitida* orally did not produce any mortality nor any visible toxic manifestations. The chloroform extract of *Cola nitida* produced mortality at 2000mg/kg (50%); no deaths were observed when the dose was reduced to 1000mg/kg.

Gastrointestinal motility test

A significant dose-dependent inhibition of intestinal motility was observed by the ethanol (p<0.01 to p<0.001) and chloroform (p<0.05) extract of *Cola nitida* compared to the negative control as described in the table below. Loperamide hydrochloride produced the highest inhibition on gastrointestinal motility activity than the highest dose of both the ethanol and chloroform extracts.

Castor oil-induced diarrheal test

The ethanol (p<0.0001) and chloroform (p< 0.0001) extracts of *Cola nitida* significantly inhibited diarrheal activity of plants. Ricinoleic acid, the active constituent of castor oil is implicated in its diarrheal effect by stimulating peristaltic activity in the small intestine which leads to a change in permeability of electrolyte in the intestinal mucosa. It can also stimulate the release of endogenous prostaglandins which in turn result in the stimulation of secretion and motility.
Alkaloids, tannins, flavonoids and saponins are some of the phytochemical constituent present in the ethanol and chloroform extracts of *Cola nitida* (Table 1). Flavonoids have been reported to inhibit intestinal motility and prostaglandin synthesis by altering the synthesis of the cyclooxygenase enzymes. Tannins present in the ethanol and chloroform extracts of *Cola nitida* will form precipitates with the proteins present in the small intestine to form tannates which will in turn make the mucosa resistant to any chemical change and therefore reduce peristalsis and secretion.

Table 4: The effect of the ethanol and chloroform seeds extract of *Cola nitida* on castor oil-induced gastroenteropooling

<table>
<thead>
<tr>
<th>Treatment groups</th>
<th>Dose (mg/kg)</th>
<th>Average weight of small intestinal content±SEM</th>
<th>Average volume of small intestinal content ±SEM</th>
<th>% Reduction in volume of intestinal content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water</td>
<td>10</td>
<td>1.35±0.16</td>
<td>1.10±0.02</td>
<td>0</td>
</tr>
<tr>
<td>Loperamide HCl</td>
<td>2</td>
<td>1.57±0.13</td>
<td>0.42±0.19</td>
<td>61.82</td>
</tr>
<tr>
<td>Cola nitida</td>
<td>150</td>
<td>1.148±0.36</td>
<td>0.44±0.19</td>
<td>60.00</td>
</tr>
<tr>
<td>(Ethanol)</td>
<td>300</td>
<td>1.186±0.13</td>
<td>0.40±0.18</td>
<td>63.64</td>
</tr>
<tr>
<td>Extract</td>
<td>650</td>
<td>1.57±0.35</td>
<td>0.60±0.28</td>
<td>45.45</td>
</tr>
<tr>
<td>Cola nitida</td>
<td>150</td>
<td>0.632±0.13**</td>
<td>0.46±0.09</td>
<td>58.18</td>
</tr>
<tr>
<td>(Chloroform)</td>
<td>300</td>
<td>1.920±0.17*</td>
<td>0.58±0.15</td>
<td>47.27</td>
</tr>
<tr>
<td>Extract</td>
<td>650</td>
<td>0.606±0.15**</td>
<td>0.08±0.08**</td>
<td>92.73</td>
</tr>
</tbody>
</table>

Mean±SEM (n=5). *P<0.05, **P<0.01 compared to the control

This study showed that ethanol and chloroform extracts of *Cola nitida* had anti-diarrheal effect in all experimental models employed. In the gastrointestinal motility test, the extracts decreased the transit of charcoal meal dose dependently (Table 2). The ethanol extract at 150mg/kg, 300mg/kg and 650mg/kg showed higher inhibition of gastrointestinal motility (55.64%, 59.73% and 71.34%) compared to the chloroform extract at the same doses (5.13%, 10.48% and 12.02%). The percentage inhibition of gastrointestinal motility was comparable to that shown by the standard drug Loperamide hydrochloride. A reduction in motility in *Cola nitida* can therefore be postulated that the action of castor oil. Maximum anti-diarrheal activity of tannins and flavonoids has been reported to inhibit intestinal motility and prostaglandin synthesis by altering the synthesis of cyclooxygenase enzymes. Thus, this may be due to its ability to inhibit the release of prostaglandin and consequently increasing the reabsorption of water and electrolytes. All doses of the ethanol extract of *Cola nitida* showed better anti-diarrheal activity in the gastrointestinal motility test and castor oil-induced diarrhea test than the chloroform extract which showed significant activity in the castor oil-induced gastroenteropooling test. This activity may be as a result of phytochemical constituents in the extracts working singly or together.

CONCLUSION

This study showed that the ethanol and chloroform seed extract of *Cola nitida* extract possessed significant anti-diarrheal activity which may be as a result of the presence of phytochemical constituents like tannins, flavonoids, saponins and alkaloids. This study therefore provides pharmacological basis for the use of *Cola nitida* for the management of diarrhea in some rural communities in Ghana.

ACKNOWLEDGEMENTS

The authors wish to appreciate the contributions of Mr. Kelvin for his help with the screening of phytochemical constituents and Mr. Kwame Koomson for his technical assistance all through the research. Conflict of interest: No conflict of interest associated with this work.

CONFLICT OF INTEREST

No conflict of interest associated with this work.

AUTHOR’S CONTRIBUTION

The manuscript was carried out, written, and approved in collaboration with all authors.

REFERENCES

https://doi.org/10.1186/1287-019-4599-6

6. Hons BP, Pharm D, Dip M, Pharm C, Psgh F. Children less than 5 years of age at the. 2010; 1–77.

https://doi.org/10.1002/jcph.414

https://doi.org/10.3406/outr.2004.4110

https://doi.org/10.1006/jcph.414

https://doi.org/10.3923/jpt.2019.1.8

https://doi.org/10.1111/j.2042-7158.1978.tb13150.x

https://doi.org/10.1016/S1995-7645(12)60014-5

https://doi.org/10.1186/s12960-017-1696-1

