INTRODUCTION

Nanoparticles are promising drug delivery systems of controlled and targeted drug release. Nanoparticles are solid colloidal particles with diameters ranging from 1-1000 nm. They possess unique properties like small size, high surface area, and ease of suspending in liquids, deep access to cells and organelles, variable optical and magnetic properties are offered by nanoparticles. Their advantages include increased bioavailability, site-specific drug delivery, sustained release of drug over longer periods of time, retention of dosage form and reduction in dosing frequency. Abacavir is a nucleoside analog reverse transcriptase inhibitor (NRTI), antiretroviral drug; it is used in treatment of AIDS. The present study deals with the formulation and evaluation of Abacavir nanoparticles.

METHODS

Abacavir nanoparticles were formulated by solvent displacement method using Eudragit RL-100, chitosan and Poloxamer-188. Nanoparticles were characterized by determining its particle size, drug entrapment efficiency, particle morphological character and in-vitro drug release.

RESULTS

Particle size range of nanoparticles was in the range of 121.4-140.6 nm. Zeta potential of formulations was determined, and it was found in range of 16.5-20.45 mv. The in-vitro release of nanoparticles was carried out which exhibited a sustained release of Abacavir from nanoparticles up to 10 hrs.

CONCLUSION

The study concludes that nanoparticles can be a promising drug delivery system for sustained release of Abacavir in terms of increased bioavailability.

KEYWORDS

Abacavir, entrapment efficiency, nanoparticles, solvent displacement method, Zeta potential.
Particle size, surface morphology and zeta potential
The surface morphology (roundness, smoothness, and formation of aggregates) and particle size were studied by scanning electron microscopy. Zeta potential is an abbreviation for electrokinetic potential in colloidal systems. Zeta potential of the formulations was determined by zeta potential probe model DT-300.

Table 1: Composition of different Abacavir nanoparticles

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>Eudragit RL-100 (mg)</th>
<th>Chitosan (mg)</th>
<th>Water (ml)</th>
<th>Acetone (ml)</th>
<th>Poloxamer-188 (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP1</td>
<td>100</td>
<td>-</td>
<td>40</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>NP2</td>
<td>200</td>
<td>-</td>
<td>40</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>NP3</td>
<td>-</td>
<td>100</td>
<td>40</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>NP4</td>
<td>-</td>
<td>200</td>
<td>40</td>
<td>10</td>
<td>40</td>
</tr>
</tbody>
</table>

Drug content
The drug content in each formulation was determined by weighing nanoparticles equivalent to 30 mg of Abacavir and dissolving in 100 ml of 6.8 pH phosphate buffer, followed by stirring. The solution was filtered through a 0.45μ membrane filter, diluted suitably and the absorbance of resultant solution was measured spectrophotometrically at 271 nm using 6.8 pH phosphate buffer as blank.

Nanoparticles recovery
The recovery of nanoparticles suspension was analyzed by centrifugation method, where 10 ml suspension was centrifuged at 15000 rpm at 4°C. The sediment nanoparticles were collected, freeze dried and calculated for % yield.

Drug entrapment efficiency
15 mg of freeze dried nanoparticles were taken in a volumetric flask filled with distilled water for extraction of drug and kept for 24 hours. The mixture was sonicated for 20 min. Then filtered by using vacuum filter to obtain complete clear solution and sample will be assayed by UV-spectrophotometer at 271 nm.

In vitro release studies
In vitro release studies were carried out by using dialysis tubes with an artificial membrane. The prepared Abacavir nanoparticles and 10 ml of phosphate buffer pH 7.4 was added to the dialysis tube and subjected to dialysis by immersing the dialysis tube to the receptor compartment containing 250 ml of phosphate buffer pH 6.8. The medium in the receptor was agitated continuously using a magnetic stirrer a temperature was maintained at 37±1°C. 5ml of sample of receptor compartment were taken at various intervals of time over a period of 24h and each time fresh buffer was replaced. The amount of drug released was determined spectrophotometrically at 271 nm.

Kinetic modeling
In order to understand the kinetic and mechanism of drug release, the result of in vitro drug release study of nanoparticles were fitted with various kinetic equation like zero order, first order and Higuchi’s model.

Table 2: Physicochemical characterization of Abacavir nanoparticles.

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>Particle size (nm)</th>
<th>% Drug content</th>
<th>% Yield</th>
<th>Zeta potential (mv)</th>
<th>% Entrapment efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP1</td>
<td>121.4±0.37</td>
<td>70.44±0.26</td>
<td>59.46</td>
<td>16.5±0.52</td>
<td>99.22</td>
</tr>
<tr>
<td>NP2</td>
<td>125.5±0.25</td>
<td>78.32±0.41</td>
<td>64.38</td>
<td>18.31±0.37</td>
<td>99.45</td>
</tr>
<tr>
<td>NP3</td>
<td>130.4±0.71</td>
<td>80.35±0.82</td>
<td>69.57</td>
<td>20.45±0.41</td>
<td>99.92</td>
</tr>
<tr>
<td>NP4</td>
<td>140.6±0.43</td>
<td>84.22±0.31</td>
<td>70.65</td>
<td>19.72±0.73</td>
<td>99.85</td>
</tr>
</tbody>
</table>

RESULTS AND DISCUSSION
Four different Abacavir nanoparticles formulations were prepared by the solvent displacement method with varying proportions of Eudragit RL-100, and chitosan. The scanning electron microphotograph indicate that Abacavir nanoparticles have a discrete spherical structure without aggregation. The particle size of nanoparticles varied somewhat among the formulation due to variation in the composition of formulations. Particle size of nanoparticles was in the
range of 121.4-140.6 nm. Zeta potential of best formulation was determined and it was found in range of 16.5-20.45 MV. Since there was a decrease of surface potential, it could be concluded that a part of drug was absorbed on the polymeric particles. The drug content was maximum in formulation NP4.

![Figure 2: % Drug entrapment efficiency of Abacavir nanoparticles](image)

In general nanoparticles exhibited an increase in drug content with an increased in the polymer ratio, up to particular concentration. A decrease in drug content was observed after that point due to the saturation capacity of polymer. The percent entrapment efficiency was found to be more than 99% in all formulations.

![Figure 3: SEM of Abacavir nanoparticles of batch NP4](image)

The in-vitro release study was conducted for 10 hrs. The release of Abacavir mainly depends upon the polymer concentration. The burst release of Abacavir from nanoparticles at initial stage resulted from the dissolution of drug crystals on the surface of nanoparticles. Nanoparticles of batch NP3 shows maximum release 82.11% in 10 hrs. The in vitro release data was applied to various kinetic models to predict the drug release kinetic mechanism. Nanoparticles were fitted with various kinetic equations like zero order, first order and Higuchi’s model. The release constant was calculated from the slope of appropriate plots, and the regression coefficient (r^2) was determined by the means of PCP Disso software version 3.0.

Table 3: Correlation coefficient of different nanoparticles formulations.

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>Higuchi kinetics</th>
<th>First order kinetics</th>
<th>Zero order kinetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP1</td>
<td>0.993</td>
<td>0.882</td>
<td>0.956</td>
</tr>
<tr>
<td>NP2</td>
<td>0.992</td>
<td>0.884</td>
<td>0.950</td>
</tr>
<tr>
<td>NP3</td>
<td>0.982</td>
<td>0.917</td>
<td>0.893</td>
</tr>
<tr>
<td>NP4</td>
<td>0.976</td>
<td>0.925</td>
<td>0.900</td>
</tr>
</tbody>
</table>

CONCLUSION

The method used for preparation of nanoparticles of Abacavir was found to be simple and reproducible. The slow and constant release of Abacavir from nanoparticles maintain constant drug plasma concentration thereby increasing therapeutic efficacy. The developed formulation overcome and alleviates the drawbacks and limitations of Abacavir sustained release formulations. The development of effective nano delivery systems capable of carrying a drug specifically and safely to a desired site of action is one of the most challenging tasks of pharmaceutical formulation investigators. On the basis of different parameters i.e. physicochemical and in-vitro release study, nanoparticles of batch NP4 are concluded as optimum formulations. Further, it can be concluded that the nanoparticulate formulation can be an innovative and promising approach for the delivery of Abacavir.

![Figure 4: In-vitro drug release profile of Abacavir nanoparticles](image)
AUTHOR'S CONTRIBUTION
The manuscript was carried out, written, and approved in collaboration with all authors.

CONFLICT OF INTEREST
No conflict of interest was associated with this work.

REFERENCES